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I discuss the formal implementation, interpretation, and justification of likelihood attributions in cos-
mology. I show that likelihood arguments in cosmology suffer from significant conceptual and formal
problems that undermine their applicability in this context.

© 2017 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent decades cosmologists have increasingly made use of
arguments that involve the assignment of probabilities to cosmo-
logical models, usually as a way of guiding further theorizing about
the universe. This despite cosmology being, on the face of it, an
unlikely subject in which to employ probabilistic reasoning. In
usual applications the utility of probabilities depends on their
connection to empirical frequencies. In cosmology there is, so far as
we know, only one universe. It would therefore seem to be an
almost pointless exercise to attribute probabilities to the universe,
its particular creation, or its particular history, as the assignment of
probabilities would apparently be completely arbitrary. Neverthe-
less, perhaps owing to the significant observational limitations that
exist in cosmology, cosmologists have sought to bolster the
portance of such arguments
e measures on the space of
tion of various cosmological
could play an important role
which can then be concen-

rse is typical, and only if this
look for further explanations”
issues in cosmology concern
hich we have very little direct
to attempt to make probabi-
ossible scenarios (Schiffrin &

td. This is an open access article un
available empirical evidence with probabilistic reasoning, main-
taining that it is both important and sensible to do so.1

Not only is strictly probabilistic reasoning salient in cosmology,
but so are various other arguments which are similar in style to
probabilistic reasoning. I will refer to such reasoning in general as
likelihood reasoning. For example, typicality and some topology-
based arguments do not rely on probabilities per se, but, like
many probabilistic arguments, they aim to show that some
conclusion or kind of outcome is, for example, typical or atypical,
probable or improbable, or favored or disfavored, i.e. likely or
unlikely.2

While the logical structure of such arguments is similar, the
formal implementation, interpretation, and justification of the
likelihoods themselves can differ significantly. The aim of this pa-
per is to investigate these three features of likelihoods in order to
determine the applicability of likelihood reasoning in cosmology.
Although it is not possible to show that such reasoning definitively
fails in all cases, I will argue that the various challenges I discuss do
significantly undermine its viability in this context. These chal-
lenges include both conceptual and formal issues.

Before turning to these issues, however, it is appropriate to say a
little more about the kind of argumentswith which I am concerned.
2 A referee notes the common technical usage of the term “likelihood” in sta-
tistics or more broadly in Bayesianism. I do not mean it in any technical sense but
rather as a general term that covers kinds of reasoning similar to probabilistic
reasoning.
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In an influential paper, Gibbons, Hawkings, and Stewart (GHS) give
a concise formula for how likelihood reasoning is applied in
cosmology:

Cosmologists oftenwant to make such statements as “almost all
cosmological models of a certain type have sufficient inflation,”
or “amongst all models with sufficient baryon excess only a
small proportion have sufficient fluctuations to make galaxies.”
Indeed one popular way of explaining cosmological observa-
tions is to exhibit a wide class of models in which that sort of
observation is “generic.” Conversely, observations which are not
generic are felt to require some special explanation, a reason
why the required initial conditions were favoured over some
other set of initial conditions.”(Gibbons et al., 1987)

GHS here suggest how such arguments can be used to guide further
theorizing in cosmology. As they explicitly say, if some observed
feature of the universe can be shown to be likely among the
physically reasonable cosmologies, then it requires no further
explanation; if it is unlikely, then it requires further explanation.
Another variant goes as follows: if some unobservable feature of
the universe is shown to be likely among physically reasonable
cosmologies, then one infers that it exists; if it is unlikely, then one
infers that it does not. In the following section I will provide an
important example, fine-tuning of the standard model of cosmol-
ogy, that follows these formulas.

I emphasize that there exist various formal implementations of
likelihood that can be used to support this kind of argument,
e.g. using topology, measure theory, probability theory, etc. Cos-
mologists, however, have generally favored those that are similar to
the application of likelihoods in statistical mechanics, a context
where likelihood reasoning is acknowledged as successful. Simply
inferring from the success of arguments in statistical mechanics to
similar ones in cosmology presupposes, however, that the justifi-
cation and interpretation of likelihoods in statistical mechanics
appropriately carries over to the cosmological context. I will argue
that this presupposition is incorrect. Indeed, a central claim
defended in this paper is that the justification and interpretation of
cosmological likelihoods cannot be secured by similar strategies
used to justify and interpret the use of likelihoods in statistical
mechanics. I draw attention to this particular strategy at the outset
because many cosmologists appear to take the problematic in-
ferences for granted, and it is important to see that it is not viable.
This is not the only strategy, of course, so its failure does not
completely undermine likelihood reasoning in cosmology. Hence,
although there is an emphasis on this particular strategy in the
paper, in the main it concerns general challenges to implementing,
interpreting, and justifying likelihoods in cosmology.

Although investigating the full complement of formal imple-
mentations of likelihood notions would be of interest, for reasons of
simplicity, familiarity, and relevance to arguments made in the
literature, I will concentrate mostly on probabilistic measures of
likelihood. Although I will usually not generalize the considerations
raised in the following to other formal implementations of likeli-
hood, many of themdo so generalize; the reader is therefore invited
to keep these other implementations in mind. Nonetheless, at
times I do consider topology- and typicality-based arguments
explicitly.
3 Similarly, a topological space is specified by a set X (of possible spacetimes in
this context) and a topology on X, i.e. a collection of subsets of X (the “open” sets).
With a topology on X one can define a suitable notion of “negligible set” in the
topology on X, for example a set whose closure has empty interior. The comple-
ments of negligible sets, “generic sets,” are then sets with properties that are
“almost always” possessed by the set X. In this way topology can be used to define a
rough notion of likelihood: “almost always” and “almost never.”
Concerning probabilistic likelihoods specifically, recall that an
application of probability theory standardly requires three things: a
set X of possible outcomes (the “sample space”), a s-algebra F of
these possible outcomes (a collection of subsets that is closed under
countable set-theoretic operations), and a probability measure P
that assigns probabilities to elements of F .3 The probability spaces
relevant for likelihood reasoning are those whose possible out-
comes are possible cosmologies (models of the universe). Since the
success of probabilistic arguments depends on an adequate justi-
fication of the relevant probability space and an adequate inter-
pretation of probability in this context, I take as necessary
conditions on a cosmological probability space that it be well-
defined and that the choice of X and P must be justifiable and
physically interpretable. (I take it that F can be chosen on essen-
tially pragmatic grounds.) These are the implementation, inter-
pretation, and justification conditions required for a probabilistic
likelihood attribution. The challenges I raise in the following
concern meeting these conditions.

The plan of the paper is as follows. I first provide (x2) a concrete
example, fine-tuning problems with the standard model of cos-
mology, to furthermotivate and focus the subsequent investigation.
In x3 I consider general conceptual issues of probability measures in
cosmology, including the specification of the appropriate reference
class X, and the interpretation and the justification of the proba-
bility measure P. The main conclusions of this section are that
implementing cosmological probabilities can only be understood as
an assignment of probabilities to initial conditions of the universe
and, more importantly, that there is indeed no acceptable justifi-
cation for any particular probability measure in the context of
(single universe) cosmology. I then investigate the potential for
formally implementing a measure associated with the space of
possible cosmologies permitted by the general theory of relativity
in x4. I point out a variety of significant obstacles to providing any
such measure. One can avoid (or at least ignore) most of these
general issues by truncating the spacetime degrees of freedom so
that the relevant probability space is finite-dimensional. This is the
approach taken to define themost discussedmeasure, the Gibbons-
Hawking-Stewart (GHS) measure (Gibbons et al., 1987). In x5 I
argue that even setting aside the problems raised in xx3-4 there are
serious interpretive and technical problems with taking this nar-
rower approach, in particular for supporting the fine-tuning argu-
ments presented in x2. I offer concluding remarks in x6.

2. Fine-tuning problems in cosmology

To make the discussion more concrete, I will make use of a
specific example involving likelihood arguments. Perhaps the most
salient cases of likelihood reasoning in cosmology concern so-
called “fine-tuning” problems.4 Two of the most important fine-
tuning problems in recent history are the hot big bang (HBB)
model׳s flatness problem and horizon problem. They are important
for my purposes because there is some reason to think that they are
part of a successful chain of likelihood arguments, which I will
briefly explain now.

The horizon and flatness problems begin with observations
which suggest that the universe is, respectively, remarkably uni-
form at large scales and has a spatial geometry very close to flat. In
the context of HBB model, the old standard model of cosmology,
these presently observed conditions require very special initial
conditions: an extraordinary degree of uniformity and flatness. If
4 Fine-tuning problems also appear elsewhere in physics. For example, in high
energy physics the failure of naturalness in the standard model of particle physics,
known as the hierarchy problem, is often described as a fine-tuning problem.



5 There are several papers discussing whether cosmology is even a science
written in the middle of the 20th century: (Dingle, 1955; Munitz, 1962; Harr�e, 1962;
Davidson, 1962). Many of the views expressed, however, have been justly criticized
more recently for being overly skeptical towards addressing the scientific problems
arising from the uniqueness of the universe (Kanitscheider, 1990; Ellis, 2007;
Smeenk, 2008, 2013).

6 Quantum cosmology and multiverse cosmology could make for a different
conclusion. Although I focus on classical, single-universe cosmology here, I do
believe further investigation into these larger contexts is warranted. Although some
of my conclusions would carry over, there are some novelties which may make the
case for cosmological probabilities better there. The interested reader should refer
to the critiques in (Smeenk, 2014) and (Ellis, Kirchner & Stoeger, 2004) as a starting
point.

7 To some extent it does not matter too much precisely what X is so long as it is
large enough, since one can always use the probability measure to assign zero
probability to any subset of X, in effect counting them as impossible. Indeed, it may
be mathematically convenient to include some “extra” objects in X for mathe-
matical convenience, simplicity, etc. Nevertheless, the reference problem will
remain, whether in the guise of choosing X or choosing elements of X to which
probability zero is assigned.
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the conditions at the beginning of the universewere ever so slightly
different than these initial conditions, the universe would be
nothing at all like what it is now. The fine-tuning of the HBB model,
then, is taken to be precisely this specialness of initial conditions.

How should one understand this specialness though? The most
intuitive characterization makes use of likelihoods: spatial flatness
and uniformity are (in some sense) unlikely given the relevant
physical possibilities. What makes fine-tuning problematic, given
this rendering, is unfortunately never made especially clear by
cosmologists, but one might think that unlikely circumstances are
either simply unlikely to be true or perhaps that such circum-
stances lack explanatory power (making such fine-tuning problems
explanatory problems). In any case, it is in this way that the two
fine-tuning problems can be understood as instances of likelihood
arguments. Following the formula of GHS, in the context of the HBB
model flatness and uniformity are not generic; therefore they
require an explanation.

Hence this is not the end of the story, since the fine-tuning
problems create an explanatory demand. Indeed, the flatness and
horizon problems are standardly used to motivate the introduction
of the theory of cosmological inflation as a solution. According to
many cosmologists, inflationmakes uniformity and flatness generic
outcomes of the inflationary epoch and is itself a generic mecha-
nism found in a wide variety of spacetimes. Thus, following the
formula of GHS, cosmologists claim to have exhibited a wide class
of models in which flatness and uniformity are generic, thereby
explaining the flatness and uniformity of our universe.

One might dismiss these arguments as spurious, but there is
perhaps some reason to think that they might be trustworthy.
Subsequent to thewidespread adoption of the inflationary solution,
it was realized that inflationary theory could be used to make
empirical predictions of anisotropies in the cosmic microwave
background. It is generally thought that these predictions have now
been observationally confirmed. Unless inflationary theory was just
an extraordinarily lucky guess, it might seem that the arguments
that led to it exhibited good reasoning (Cf. (McCoy, 2017a)).

Although these arguments may be mistaken in various respects,
my interest in them here concerns their apparent reliance on
likelihoods. Certainly physicists can be easily read as adopting this
probabilistic characterization of the fine-tuning problems and their
resolution as likelihood arguments; some philosophers have dis-
cussed them along these lines as well (Earman, 1995; Earman &
Mosterín, 1999; Smeenk, 2013; McCoy, 2015). The philosophical
analyses made so far have not focused, however, on assessing the
details of the likelihoods involved, i.e. on assessing the imple-
mentation, interpretation, and justification thereof. Thus the
example described in this section is an important application of this
study of likelihood reasoning.

Note that there are three steps in the fine-tuning arguments for
inflation that depend on likelihoods (Ellis, 1988; Coule, 1995). First,
it must be demonstrated (rather thanmerely supposed on the basis
of intuition) that the uniform and flat spacetimes underlying the
HBBmodel are unlikely. If they are unlikely, then they require some
special explanation (as GHS say). This is why they should be
considered fine-tuning problems. If inflationary theory is to solve
these problems, then it must be shown that inflating cosmologies
generically lead to spatial uniformity and flatness. This is the sec-
ond place where likelihoods must be invoked. It must also be
shown, however, that inflating cosmologies themselves are not
unlikely, or that they are at least more likely than the special HBB
spacetimes. This is the third place where likelihoods must be
invoked.

Cosmologists have often relied on intuitive judgments of like-
lihood in making the arguments mentioned above, but the
soundness of the arguments plausibly depends on there being an
objective way of assessing the likelihoods of cosmological models
(Gibbons et al., 1987; Hawking & Page, 1988) and some justified
way of interpreting these likelihoods. Let us first look, then, at what
problems stand in theway of justifying and interpreting likelihoods
in cosmology.

3. General conceptual problems

In this section I discuss the significant conceptual issues that
stand in the way of establishing a likelihood measure on the space
of possible cosmologies. These general issues concern the choice of
an appropriate reference class of cosmologies to serve as the
sample space, and the justification and interpretation of a specific
measure associated with the sample space.

The basic issue which makes applying probability theory to
cosmology difficult has already been mentioned: there is, so far as
we know, only one universe. The uniqueness of the universe has
long been recognized as a problem for cosmology as a science,
however its significance has often been overstated.5 Thus it is
necessary to draw the argument out in some detail in order to avoid
an overly hasty conclusion. In the end, though, I do conclude that
the point is decisive. There is simply no physical content to be found
in the addition of cosmological probabilities to classical, single-
universe cosmology.6

3.1. The reference class problem

The first issue to face in defining a probability space in cos-
mology is deciding on the appropriate reference class, i.e. the
appropriate sample space. Again, a probability space is standardly
specified by a set X of possible outcomes, a s-algebra F of these
possible outcomes, and a probability measure P that assigns
probabilities to elements of F . The problem of deciding the
appropriate reference class is the problem of determining precisely
what X should include.7

I begin with the reference class problem because likelihood
reasoning depends very much onwhat X is. If the set of possibilities
is in fact much, much larger than one assumes, an outcome that is
likely according to one׳s assumptions may actually be unlikely. In
contrast, the reference problem is less of an issue when modeling
specific physical systems. So long as the target system can be
modeled, one usually does not care so much which other systems
are physically possible.

As said, in cosmology the appropriate reference class X will be
the set of (physically) possible cosmologies. A cosmology is stan-
dardly taken to be a relativistic spacetime in contemporary
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cosmology, i.e. a model of the general theory of relativity (GTR).8

This is essentially because at large scales gravity appears to be
the most important physical force in the universe, and general
relativity is the best, most highly-confirmed theory of gravity that
we have. Assuming that every element of X is a relativistic space-
time does not, however, obviously answer the question of what the
possible cosmologies are. Which set of models of GTR are possible
models of the universe?

Trust in our theories is usually thought to underwrite the belief
that the models of that theory are physically possible. On this point
of view our justified belief in the laws or modal structure of GTR
would therefore determine X as the complete collection of models
of GTR. This collection, the nomologically possible models, is the
result of “the most straightforward reading of physical possibility”
(Earman, 1995, 163)9.

The practice of cosmologists (and relativists) does not neces-
sarily accord with this line of thinking however. By any measure
general relativity is a permissive theory; any number of undesirable
or pathological spacetimes is possible according to it.10 Many au-
thors are for this reason inclined to exclude certain models from
physical consideration, such as models with closed timelike curves
(CTCs).11 Should one exclude pathological examples from the set of
possible cosmologies because they do not strike one as “physically
possible”?

I do not mean to take a stand on the question here. The point I
rather wish to make is that in practice cosmologists do exclude
certain relativistic spacetimes from consideration, thereby
presuming some alternative physical modality to the “straightfor-
ward” nomological one given by the general theory of relativity. For
the most part models are excluded merely because they are
thought to be physically impossible or physically unreasonable,
although (as a referee suggests) exclusions may be made on the
basis of additional laws added to GTR as well. Nevertheless, the
available justifications for these exclusions tend to be rather
dubious (if given at all), as they do not rely on well-motivated
physical principles or observational grounds (as has been noted
by some commentators (Earman, 1987; Manchak, 2011)).
8 In full detail it should also include a physical model of relevant cosmological
phenomena in that spacetime (Ellis & van Elst, 1999; Cotsakis & Leach, 2002; Ellis,
Maartens & MacCallum, 2012), but for my purposes it is only necessary to consider
the spacetime component of a cosmology, setting aside the specific physics of the
spacetime׳s material contents.

9 This straightforward reading of physical possibility is actually spelled out in two
ways by Earman and his collaborators (Earman et al., 2009, 95), but here I will
simply take this reading as the identification of nomological and physical
possibility.
10 Among the more exotic models are the “causally bizarre” G€odel spacetime and
Taub-NUT spacetime which have CTCs. It must be acknowledged, however, that
even the most familiar examples of spacetimes permitted by GTR have fairly
unintuitive features: expanding space (Friedman-Robertson-Walker, de Sitter),
spacetime singularities (Schwarzschild, Friedman-Robertson-Walker), etc. There-
fore some distinction between the “undesirable” and the merely “unintuitive” need
be made.
11 The inclination to disbar spacetimes with CTCs is sometimes characterized
(grandiosely) as the “cosmic censorship conjecture.” Wald (1984, 304) states it
simply (albeit imprecisely) as “all physically reasonable spacetimes are globally
hyperbolic.” Since globally hyperbolic spacetimes do not have CTCs, it follows that
all physically reasonable spacetimes do not have them either, at least if this version
of the cosmic censorship conjecture is true. But then one wonders what it takes to
be a physically reasonable spacetime. Whereas some find CTCs objectionable on
philosophical groundsdfor example, “those who think that time essentially in-
volves an asymmetric ordering of events…are free to reject the physical possibility
of a spacetime with CTCs” (Maudlin, 2012, 161)dothers encourage a certain degree
of epistemic modesty with respect to physical reasonableness. Manchak (2011), for
example, demonstrates that given any physically reasonable spacetime there exists
observationally indistinguishable spacetimes which exhibit undesirable or patho-
logical features.
Some weight of consideration should be accorded to practice
however, so the possibility of justifying the exclusion of patholog-
ical spacetimes should not be quickly dismissed merely because
adequate justifications have not been so far given. If so, then the
reference class problem cannot be regarded as solved simply
because one can identify nomological and physical possibility by
fiat (or by philosophical artifice).

In any case, even permitting the kinds of assumptions that
exclude pathological spacetimes (such as global hyperbolicity
which rules out CTCs) or mathematically inconvenient spacetimes
(such as those that lack compact spatial sections), one is still left
with a vast collection of cosmological models which will then be
considered physically possible. If one furthermore arbitrarily re-
stricts attention to spacetimes with some specific manifold M, as is
common in the cosmology and relativity literature, i.e. to the sub-
collection of physically possible cosmologies with underlying
manifold M and a physically possible metric g on this manifold
(Lerner, 1973), one generically has an infinite-dimensional space
(GTR is a field theory, after all). This leads to a second difficulty
related to the nature of the reference class: although this space of
models will possess some mathematical structure, there are diffi-
culties with defining a probability measure (in particular) on such a
space (see x4 below).

Whether because of these difficulties or in ignorance of them,
physicists’ attention has so far been mostly directed at simple sets
of cosmologies which can be presented as finite-dimensional state
spaces, e.g. the state spaces on which one can define the GHS
measure (the main topic of x5). While this brings the cosmological
framework closer to the statistical mechanical one, where state
spaces are generally taken to be finite-dimensional, this maneuver
raises a (third) problem, which is not found in the statistical me-
chanical context. How can ameasure contrived on a special (sub)set
of physically possible spacetimes represent cosmological proba-
bilities correctly?

On the one hand, if the collection S of simple models, e.g. spa-
tially homogeneous and isotropic spacetimes, is taken to be the full
set of physically possible models, then it is difficult to see how this
can be justified on any well-motivated physical principle or on
observational grounds. Surely, that is, GTR (or even pure physical
intuition) suggests that there are spacetimes which may be phys-
ically possible cosmologies besides any particular simple collection
of spacetimes S.

If, on the other hand, the collection S (equipped, say, with
probability measure mS) is a subset of a larger possibility space X
(equipped with probability measure mX), then the likelihood of a set
of models Z3S in the subspace must be a conditional likelihood
mSðZÞ ¼ mXðZjSÞ. In other words, the probability space S must be a
conditional probability space of X.12 Formally, the probability
assigned to a collection of models Z3S must be

mSðZÞ ¼ mXðZjSÞ ¼
mXðZ∩SÞ
mXðSÞ

¼ mXðZÞ
mXðSÞ

: (1)

The probabilities of the large space X put a constraint on the
probabilities of the smaller space S, a constraint that the probability
measures which can be associated with the smaller space are not
guaranteed to meet.

To illustrate these considerations in the most important case in
cosmology, consider the subset of models of GTR that satisfy the
12 Let X be the larger sample space with s-algebra F and probability measure mX.
Suppose S is a measurable subset of X with non-zero measure according to mX. Then
the conditional probability space S has s-algebra fS∩ZjZ2F g and probability
measure mSðS∩ZÞ ¼ mXðZjSÞ.
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cosmological principle (CP). The CP constrains the set of models
from general relativity to those that are spatially homogeneous and
isotropic. These models are known as the Friedman-Robertson-
Walker (FRW) spacetimes. First, we may ask, is this assumption
admissible as away of specifying X? Although the FRWmodels have
been observationally successful, there is certainly no good argu-
ment that justifies the CP as definitively delimiting the space of
physically possible spacetimes (Beisbart and Jung, 2006; Beisbart,
2009)despecially since the universe is not strictly speaking ho-
mogeneous and isotropic. More plausibly, then, the probabilities
that we would obtain by making this assumption and building a
probability measure on the set of FRW spacetimes are not uncon-
ditional probabilities: the space of physically possible cosmologies
is surely larger. How large? If the space X of physically possible
cosmologies is the space of nomically possible spacetimes (ac-
cording to GTR), then the set S of FRW models is almost certainly
negligible, a problematic result given the uses to which cosmolo-
gists want to put likelihood measures in cosmology. Even if S were
not negligible, it is hard to see what the point of constructing
measures associated with S, the set of FRW spacetimes, is without
knowing what the measure is associated with the full possibility
space X (at least if the motivation is to derive an objective proba-
bility measure). One simply needs to know the full measure (well
enough, anyway) in order to know the correct conditional measure.

Summing up, three issues were raised in this section. I first drew
attention to the justification of a particular set of possible space-
times as the physically possible ones. In most applications of
physical theory this issue is perhaps not pressing; for likelihood
arguments to be successful in cosmology, however, it is crucial to
choose the right X, since whether a spacetime or set of spacetimes
is likely depends on precisely what the reference class is. Second I
noted that the set of physically possible spacetimes is almost
certainly infinite dimensional, unlike the possibility spaces used in
statistical mechanics. This is a significant disanalogy and, moreover,
creates serious technical difficulties in defining the possibility space
as a probability space (as will be discussed below in x4). Finally I
pointed out that restricting attention to a subset of physically
possible spacetimes and assigning probabilities to the elements of
this subset is a dubious strategy, since this subset must form a
conditional probability space of the full probability space associ-
ated with the set of physically possible spacetimes.
3.2. Interpretation of cosmological likelihoods

The second issue to address is how to interpret cosmological
likelihoods. I will say something in a moment on what I mean by
interpretation, but I will begin with a preliminary issue: whether
the likelihoods invoked in cosmology should be understood as
epistemic or ontic. By ontic probabilities I mean physical proba-
bilities; they describe chanciness (in one way or another) inherent
in the physical system. Epistemic probabilities are probabilities
which are attributed to agents; they are justifiable degrees of belief.
If ontic probabilities exist and are known, then a plausible rule of
rationality holds that epistemic probabilities should be set to the
ontic probabilities. Nevertheless epistemic probabilities can be
applicable to situations that do not involve ontic probabilities,
e.g. when in situations of uncertainty.

On the one hand, one might expect that cosmological likeli-
hoods should be ontic if they are to have physical significance and
play a role in fine-tuning arguments. Perhaps this is why this
13 The notable papers discussing their approach include (Henneuax, 1983;
Gibbons et al., 1987; Hawking & Page, 1988; Coule, 1995; Gibbons and Turok,
2008; Carroll and Tam, 2010; Schiffrin and Wald, 2012).
approach is favored by most cosmologists who have written on the
topic. The most well-known proposal in this vein is the already-
mentioned canonical measure of (Gibbons et al., 1987), the GHS
measure.13 Topological methods may be used to give an objective
measure of likelihood as well.14 The basic strategy of these ap-
proaches is to begin with some physically motivated attribution of
likelihoods to sets of cosmologies in some relevant space of
possible cosmologies. The motivations may come, for example,
from the structure of the space of models of GTR or from intuitions
on how models in such spaces are physically related. With the
likelihoods in hand, if one finds (for example) that spatially flat
FRW spacetimes represent a negligible set of cosmologies and
inflating FRW spacetimes are generic cosmologies, arguably one
has a warranted basis for making an argument in favor of inflation.

On the other hand, purely epistemic notions of likelihood appear
to be behindmany cosmologists’ intuitions about fine-tuning cases.
There are relatively few places in the literature where more precise
formal methods are used to help substantiate these intuitions.
Accordingly, it is difficult to analyze and assess the merits of purely
epistemic measures of likelihood in cosmology in general. Exam-
ples do however exist, such as (Evrard and Coles, 1995) and
(Kirchner and Ellis, 2003).15

A more thorough review of approaches to defining cosmological
likelihoods would engage with the epistemic approaches, however
I will only address the more prominent physical approaches (apart
from some comments on the principle of indifference below). This
is due to the greater importance of the latter approaches in the
physics literature and to maintain a reasonable scope in this paper.

I will also be more restrictive than is usual in the philosophical
literature in how I employ the term “interpretation” in what fol-
lows. In philosophy an “interpretation of probability” is usually
understood to refer to an account of how the concept of probability
should be analyzed (H�ajek, 2012). For the purposes of my argument
it is not necessary to make use of the standard accounts, e.g. the
logical interpretation, the frequentist, the propensity, etc. By “how
probability is interpreted” I will mean “how randomness is un-
derstood”. It is important to recognize some source of randomness
in an application of probability theory in order for that application
to be justified. As Hollands and Wald say in their discussion of
applications of probability in cosmology, for example,

probabilistic arguments can be used reliably when one
completely understands both the nature of the underlying dy-
namics of the system and the source of its ‘randomness׳. Thus,
for example, probabilistic arguments are very successful in
predicting the (likely) outcomes of a series of coin tosses.
Conversely, probabilistic arguments are notoriously unreliable
when one does not understand the underlying nature of the
system and/or the source of its randomness. (Hollands and
Wald, 2002b, 5)

Identifying possible sources of randomness is generally over-
looked as away of distinguishing accounts of probability. For purely
epistemic probabilities this randomness is introduced by the agent,
whether in terms of her independent choice, a standard of indif-
ference, etc. For genuine chances this randomness comes from the
physical situation (in some respect or another). This randomness
need not be taken as a full-fledged feature of nature however. In
14 Hawking (1971), for example, proposes the application of such methods in
cosmology. (Isenberg & Marsden, 1982) is another well-known example.
15 Evrard (1996) and Evrard & Coles (1995) argue for a dissolution of the flatness
problem using an epistemic approach to cosmological parameters. Their approach
is criticized by Coule (1996), who favors the canonical measure.
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Humean accounts of chance, for example, all that is understood to
exist is a so-called “Humean mosaic” of events; laws and proba-
bility are understood as objective systematizations of this mosaic
(Loewer, 2001, 2004).

In physics the structure of theories can helpfully suggest where
objective randomness may be “realized”. Conventional physical
theories are described in terms of a set of physically possible states,
a dynamics that determines the evolution of a system from physical
state to physical state, and a set of functions that determine
observable quantities defined on the set of states. Therefore there
are naturally three ways randomness can enter into a physical
description: the initial state of the system, the particular dynamical
evolution of the system, and the realized observable properties of
the system. From a metaphysical point of view one might question
whether the association of randomness with these formal,
descriptive features of theories is ontologically significant. Never-
theless, for present purposes it is sufficient to address the inter-
pretation of probability at this theoretical level of description.

With this bit of terminology fixed, we can now ask how to
interpret probability in cosmology, i.e. where to attribute
randomness in the universe. Insofar as one takes the standard
approach, according to which cosmological models are relativistic
spacetimes, the space of states will be the set of possible spacetimes
(or perhaps initial data on a spacelike hypersurface) permitted by
GTR (or some subset thereof, as discussed in the previous section,
depending on how one solves the reference class problem). The
dynamics is given by the Einstein equation and the observables are
going to be certain geometric properties of spacetime (which must
in practice of course be supplemented by other physical models to
derive proper observables like galaxy counts, galactic redshifts,
light element abundances, etc.). Since general relativistic dynamics
is essentially deterministic (setting to the side the issue of gauge
and pathological spacetimes such as those with closed time-like
curves, as these do not introduce randomness into the theory),
one cannot locate the randomness there except by making the
randomness so insignificant as to give rise to an essentially deter-
ministic dynamics. Empirical considerations strongly militate
against the idea that cosmological observables are substantially
stochastic as well. In short, there is very little reason to think that
the universe is “fluctuating” around the space of possible cosmol-
ogies dynamically and very little reason to think that its observable
properties are either (insofar as one can even distinguish these).
That leaves the initial state, the initial “choice” of spacetime, as the
only way physical randomness can enter into cosmology.16

On this interpretation the (initial condition of the) universe is to
be understood as the outcome of a random trial, whether literally or
merely characterized as such. A cosmological probability measure,
in other words, can only represent the objective chance of our
universe being in a particular state (initially) or of a possible uni-
verse being realized. Naturally, the possibility of this viewpoint has
suggested itself to some cosmologists, who compare the situation
(usually pejoratively) to a blind-folded creator selecting a universe
by throwing a dart at the dartboard of possible universes.17

Should one adopt such a point of view in cosmology? It is a
coherent possibility at least. It is arguably tenable in statistical
mechanics (where it is (tacitly) employed in typical Boltzmannian
approaches) as one can at least verify the consistency of frequencies
of initial microstates with empirical frequencies of observables
16 At least this is so at this level of description. The context of quantum cosmology
would open up alternative possibilities. However the present discussion is, again,
focused only on classical cosmology, in keeping with literature discussed.
17 Cf. (Penrose & Mind, 1989b, 444) and (Hollands & Wald, 2002a, 2044). This
view is, however, defended philosophically in (Demarest, 2016).
(Hemmo and Shenker, 2012). In the absence of an analogousmicro-
theory, however, it is unclear why one would want to accept this
interpretation in cosmology. As Loewer flatly observes, “one
problem is that it does not make sense to talk of the actual fre-
quency with which various initial conditions of the universe are
realised” (Loewer, 2001, 615). A single-sample probabilistic sce-
nario in cosmology is obviously observationally indistinguishable
from a deterministic scenario that involves no probability at all,
only an initial state. Moreover, there is relatively little theoretical
reason to suppose that there was a random trial selecting among
the space of relativistic spacetimes. Without any input from physics
about the source and nature of this randomness of initial conditions
(recalling the Hollands and Wald quotation above) and no way to
verify it empirically, we should find the “dart throwing” interpre-
tation highly unsatisfying as an explication of cosmological prob-
abilities. If we were, however, to possess a trustworthy theory that
did suggest such a random start to the universe (a multiverse
theory or a theory of quantum gravity could do so, if sufficiently
warranted), then we might have sufficient reason to introduce a
probability measure and interpret it in this way. It would likely not
be, however, associated with the full space of classical relativistic
spacetimes.

I think it worth noting in passing that this issue of interpretation
also infects foundational discussions of statistical mechanics when
they move in response to the pressure to “globalize” the theory
(Callender, 2011b), i.e. to treat the universe as a whole as a statis-
tical mechanical system. As said, in the Boltzmannian approach the
only possibility for interpreting statistical mechanical randomness
is in understanding the initial conditions of the system as random
(either in actuality or as the best systematization of the “Humean
mosaic”). As before, we have relatively little reason to believe that
the universe itself began as the outcome of a random trial in this
scenario. It is only by generalizing from familiar statistical me-
chanical systems, i.e. subsystems of the universe, to the universe as
whole (supposing that it is a statistical mechanical system too) that
the idea has any degree of plausibility. Nevertheless this inference
is disturbingly close to a composition fallacy.18

Therefore, in both theoretical contexts mentioned, general rel-
ativity and statistical mechanics, the only admissible interpretation
of cosmological probabilities locates the associated randomness
with initial conditions. Although the interpretation is coherent, I
have suggested already that in both cases this interpretation has
very little to recommend it. Whether one should adopt it, however,
is really a matter of justification, so to this topic I turn.
3.3. Justification of cosmological likelihoods

The final issue to address in this section is the justification of
cosmological likelihoods. The particular case on which I have been
concentrating is that of probability distributions on some given
sample space of cosmologies, assuming that initial conditions are
subject to (real or imagined) randomness (since this is the only
available ontic interpretation). To be sure there are significant
technical problems with supplying such a probability space struc-
ture to these possible cosmologies, as will be discussed in x4. Even if
these technical problems could be overcome, however, a more
crucial issue is whether it is possible to adequately justify any
18 That is, an unsupported inference that a property of the parts is a property of
the whole.
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particular cosmological probability measure. I will argue that it is
not possible to do so.19

The first (admittedly obvious) point tomake is that cosmological
likelihoods cannot be empirically justified, at least insofar as cos-
mology concerns a single universe. If we suppose that probability
theory applies to cosmology, then it must be the case that our
universe is the outcome of a single random trial over possible initial
conditions, as argued above. Cosmological probability measures are
therefore vastly underdetermined. If one tries to make GTR into a
probabilistic theory by defining a probability distribution over
possible cosmologies, it is clearly the case that any choice of
probability measure that assigns some probability to the cosmo-
logical model best representing our universe is empirically
adequate. Note that the adequate probability measures include the
probability distribution that makes our universe “quasi-determi-
ned”dassigns the cosmology representing our universe probability
one.

The uniqueness of the universe therefore forces consideration of
a non-empirical justification for cosmological likelihood measures.
Several prominent cosmologists have accordingly relied on a priori
principles, like the principle of indifference (PI) or some kind of
objective “naturalness”, to justify uniform probability distributions
(Kofman et al., 2002; Linde, 2007). The PI holds that if there is no
salient reason to prefer any other probability distribution, given
some sample space, one should assign a uniform probability den-
sity to that space (hence the probability measure is purely
epistemic). A similar principle is invoked in assigning a uniform
probability distribution with respect to the natural Liouville mea-
sure associated with statistical mechanical phase spaces. Gibbons,
Hawking, and Stewart׳s approach follows the statistical mechanical
strategy. Although they note the problematic nature of the
PId“indeed…it is not at all clear that every model should be given
equal weight if one wishes the measure to provide an inductive
probability” (Gibbons et al., 1987)dthey assume that the proba-
bilities should be uniform with respect to the Liouville measure.
Carroll and Tam (2010) recognize that the Liouville measure does
not in general entail any particular probability measure. As they say,
however, “since the Liouville measure is the only naturally-defined
measure on phase space, we often assume that it is proportional to
the probability in the absence of further information; this is
essentially Laplace׳s ‘Principle of Indifference׳.” They too go for the
uniform mapping, however, and provide as precedent the practice
of assuming a uniform probability distribution on the Liouville
measure of phase space from statistical mechanics.20
19 This seems to be one of the main conclusions of (Schiffrin & Wald, 2012, 9). The
authors claim that “the only way to justify the use of the Liouville measure in
cosmology would be to postulate that the initial conditions of the Universe were
chosen at random from a probability distribution given by the Liouville measure.”
What they seem to mean is that the only possible interpretation of the Liouville
measure (when it is a probability measure and not just a measure) is that it
specifies the probabilities of specific initial conditions of the universe obtaining,
and that the only “justification” of understanding it as such is as a theoretical posit.
A posit, of course, is hardly a justificationdthey describe it (charitably) as an
“unsupported hypothesis”dso I take it that they essentially would conclude that
cosmological probabilities are unjustified.
20 One sometimes sees the Liouville measure associated with a mechanical phase
space called the “Lebesgue measure”. The Lebesgue measure standardly refers to
the natural measure associated with Rn . The measurable subsets U of phase space
can be called “Lebesgue measurable sets” in the following sense: for all charts
4 : O/Rn on n-dimensional phase space G, 4½U∩O� is a Lebesgue measurable set in
the usual sense. Since in general there is no canonical pull-back of the Lebesgue
measure to G, however, it is somewhat misleading to call the Liouville measure the
Lebesgue measure. Of course when the phase space is Rn , the Liouville measure just
is the usual Lebesgue measure and the terminology is justifiable, although con-
sistency should incline one towards the former term.
Unfortunately for one who wishes to apply such principles, in a
reference class composed of an infinity of cosmologies there is no
mathematically natural choice of probability measure and no
probability distribution uniform with respect to the Liouville
measure. In special cases (for example if the Liouville measure of a
space equipped with it is finite) there may be a canonical choice of
probability measure that is uniform with respect to the possibil-
ities, but one then faces a dilemma raised earlier: either this space
delimits the full space of possible cosmologies (which is highly
implausible, if not clearly false) or its probabilities must be condi-
tional probabilities in a larger space of possible cosmologies
(which, insofar as this larger space has infinite total measure and
therefore no uniform probability measure, cannot then be justified
by the PI, naturalness, etc.). Therefore even if a justification of
uniformity, by way of mathematical naturalness, the PI, etc., were
possible in statistical mechanics, it would not easily carry over to
the case of cosmology.

However, it has been made abundantly clear in the philosoph-
ical literature that a prioristic principles like the PI are not generally
justifiable in statistical mechanics, mainly because empirical fre-
quencies depend importantly on the nature of a physical system׳s
randomness and there is no reason to expect that the source of
randomness acts uniformly on some space of possibilities (Shackel,
2007; Norton, 2008; North, 2010). If this is correct, then the
simplest way of justifying the inference from statistical mechanics
to cosmology fails, namely that the same principle may be used in
both contexts. There is also no independent, compelling support for
the PI or its cousins in cosmology (McMullin, 1993; Ellis, 1999;
Earman, 2006; Norton, 2010; Callender, 2010). In cosmology very
little at all is known about the mechanism that brings about the
initial conditions of our models of the universe, and so assigning
equal weights to distinct cosmological possibilities (especially if
based merely on a lack of knowledge) is highly dubious, since it
may well be the case that certain initial conditions are in fact more
likely according to the true (presumably quantum) mechanism
responsible for them.21

I have so far claimed that there is no direct empirical or a priori
justification of cosmological probabilities, but there are indirect
ways through which one might try to justify them. One prominent
approach is to argue that the empirical justification of a uniform
probability distribution in statistical mechanics indirectly justifies a
uniform probability distribution in cosmology (for the moment
setting aside the usual assumption that a cosmological model is a
relativistic spacetime). In foundational discussions of statistical
mechanics (especially in the context of the “past hypothesis” sce-
nario described in (Albert, 2000)) philosophers often suppose that
the justification of a uniform probability distribution for usual
statistical mechanical systems justifies a uniform probability dis-
tribution for the universe when it is modeled as a statistical me-
chanical system. I suggested at the end of the previous subsection
that in the absence of an argument this inference commits the
fallacy of composition. Let us see now whether there is any argu-
ment which could support the validity of the inference.

The most plausible way would be to argue that the universe is a
statistical mechanical system because it is sufficiently similar to
usual statistical mechanical systems. Our best understanding of the
universe, however, suggests that it is not. Perhaps most impor-
tantly, gravitation plays a central role in cosmology unlike in con-
ventional statistical mechanical systems, as has been pointed out
and discussed in (Earman, 2006; Wallace, 2010; Callender, 2010;
21 The only viable response I can see to these points is to modify the space of
possibilities to make the PI hold, but then it is clear that the correct space of
possibilities is not in fact justifiable a priori.
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Callender et al., 2011a). This is, after all, why cosmological models
are modeled using theories of gravitation.

Although this issue by itself seriously threatens the inference,
there is a more serious problem. It is crucial to recognize that the
cosmological probabilities discussed in this paper are (in statistical
mechanical jargon) macroprobabilities, not microprobabilities.
Cosmological probabilities are attributed to entire macroscopic
histories (or initial states) of the universe. Statistical mechanical
probabilities, by contrast, are microprobabilities; they are attrib-
uted to entire microscopic histories (or initial states) of statistical
mechanical systems. There are, however, no unconditional non-
trivial macroscopic probabilities in statistical mechanics. This is
because the empirical content of statistical mechanics is related to
microscopic frequencies. Macroscopic frequencies of course can be
determined from these, and conditional macroscopic probabilities
can certainly be defined as transition probabilities. But it makes no
sense in statistical mechanics to ask what the probability is of a
system beginning in a particularmacrostate; the initial macrostate is
taken as given in statistical mechanics. Thus one cannot hope to
justify cosmological probabilities by way of the justification of
statistical mechanical probabilities, since they are different kinds of
probabilities (macro vs. micro).22 It would be a category mistake.

It is worth emphasizing the importance of this point, since
failing to locate the empirical content of statistical mechanics in
microprobabilities and to recognize the lack of an a prioristic
justification of statistical mechanical probabilities has led to some
popular, specious arguments. Particularly related to the present
discussion is the claim that the “low entropy” state of the universe
is improbable. The argument assumes that statistical mechanical
probability assignments are determined by the so-called propor-
tionality postulate, according to which a uniform probability dis-
tribution is applied to the entire phase space of the system (rather
than to just the initial macrostate). Hence non-trivial unconditional
macroprobabilities are assigned to macrostates. Macrostates with a
small phase space volume will of course be assigned a small
probability according to this principle. Since low entropy states are
assumed to have a small phase space volume, the past “low en-
tropy” state of the universe is accordingly improbable. Demands to
explain this improbability of the initial macrostate (in accord with
the GHS formula from the introduction), as in (Penrose, 1989a;
Price, 2002, 2004), are therefore based on an ill-motivated appli-
cation and interpretation of probability to cosmology (and statis-
tical mechanics).23

Cosmological probabilities therefore fail to be justifiable on all
the plausible strategies obviously available. Perhaps, though,
probability theory is simply thewrongway to formulate likelihoods
in cosmology. As said, I cannot treat all possible formulations here,
but there is one further case that is important tomention. Even if no
unique probability distribution can be justified, it may be the case
that there is a natural non-probabilistic measure on the space of
possible cosmologies. This is indeed the case with the GHSmeasure
(x5).While I grant themathematical naturalness of suchmeasures, I
stress that mathematical naturalness is no guarantee of physical
significance. It is a distinct step which requires its own justification,
interpreting a mathematically natural measure as a physical
22 Of course one might suppose that the universe has a microstate, in analogy
with statistical mechanics, but that is irrelevant to the argument here. The point is
that cosmological probabilities are unconditional macroprobabilities, and such
probabilities do not exist in statistical mechanics. Hence statistical mechanics
cannot be used to justify them in cosmology.
23 Responses to these demands have accepted their presuppositiondthat the
initial macrostate of the universe is improbabledand weighed whether and how
some explanation could be provided (Callender, 2004). One ought to simply reject
the presupposition as ill-motivated and inadequately justified.
likelihood measure. After all, measures can play a variety of roles in
a physical theory (for example as a standard for integration along
trajectories). There is simply no reason to assume that a mathe-
matical measure must play the role of a likelihood measure in any
theory that comes equipped with one.

Nevertheless, in statistical mechanics it has been argued that the
Liouville measure can be used in such a way, i.e. as a typicality
measure (Lebowitz, 1993a, 1993b; Dürr, 2001; Goldstein, 2001,
2012). In this approach to interpreting statistical mechanics one
makes do with the Liouville measure alone, and uses it as a stan-
dard of typical and atypical behavior. The basic schema of the
typicality arguments used in this context is to show that some
behavior or property is highly likely and its contrary is highly un-
likely, in which case one can infer that behavior or property holds;
“In other words, typical phase space points yield the behavior that
it was our (or Boltzmann׳s) purpose to explain. Thus we should
expect such behavior to be prevail in our universe” (Goldstein,
2001, 58).24

One of course may try to infer from the putative success of
typicality arguments in statistical mechanics to their applicability
in cosmology. Yet, if typicality arguments are indeed successful in
statistical mechanics, then they are because they depend impor-
tantly on the full complement of structures in statistical mechanics,
e.g. the correct space of possibilities, the collection of macro-states,
etc. One generally has empirical evidence that suggests the right
structures for a system in statistical mechanics. One does not have
this in the case of cosmology, in particular because of the issues
mentioned above in connection to the reference class problem.
Echoing the first point there, what is typical in cosmology depends
very much on what set of cosmologies one is consideringdand
there is no guarantee that what is typical in one context is typical in
another. Thus the transfer of justification from statistical mechanics
to cosmology is again blocked.

Although the reference class problems and the issue of inter-
pretation are important and significant, the most decisive issue is
therefore with justification. I have argued that the justification of
measures in statistical mechanics does not carry over straightfor-
wardly to cosmology, so the most appealing indirect justification
fails. I also argued that there is no independent justification for
cosmological likelihoods. A priori justifications fail, just as they do
in statistical mechanics. Empirical justification, the only sensible
justification of likelihoods in statistical mechanics, is not possible in
cosmology, due to the uniqueness of the universe. Likelihood
reasoning should be considered inapplicable to cosmology because
it cannot be adequately justified.
4. Likelihood in the solution space of general relativity

In the remaining two sections of this paper I mostly set aside the
conceptual problems which I have raised in the previous section
and consider the prospects of rigorously defining some notion of
likelihood on the space of cosmologies, i.e. without worrying too
much about whether it makes much sense to do so. In this section I
24 Although some enthusiastic disciples of Boltzmann claim that typicality is the
heart of all foundational matters in statistical mechanicsdas Dürr (2001, 122) re-
marks, “we have the impression that we could get rid of randomness altogether if
we wished to do so”dfull reliance on typicality arguments clearly represents a
significant retreat from the quantitative successes of statistical mechanics (Wallace,
2015), which depend on probability distributions to derive the empirical content of
the theory (for example to predict fluctuation phenomena). As Pitowsky further
notes, “the explanation…is a weak one, and in itself allows for no specific pre-
dictions about the behavior of a systemwithin a reasonably bounded time interval”
(Pitowsky, 2012, 41). Additional criticisms of the typicality account in statistical
mechanics can be found in (Frigg, 2009, 2011, 2012).
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deal with the case where the space of possible universes is taken to
be the solution space of GTR or some subspace thereof; in x5 I deal
with the case where the solution space is restricted to be finite
dimensional by specific modeling assumptions, focusing in partic-
ular on the GHS measure on minisuperspace.

I will follow the lead of GHS, etc. in looking for mathematically
natural, objective likelihood measures in the structure of the so-
lution space of GTR or subspaces thereof. Simply defining a likeli-
hood measure is trivial. Finding one that is “picked out” by the
mathematical structure of a theory, however, suggests (to many)
that it has special physical significance and is justified. If one has to
make a special choice, then a special justification must be given. I
will follow this line of thinking hence, despite the reservations I
raised previously.

The full solution space of GTR is the space of relativistic space-
times that satisfy the Einstein equation. The principal questions
before us are, “what structure does this space have and can that
structure be used to define a privileged notion of likelihood?” A
relativistic spacetime M is standardly defined as a differentiable
four-dimensional manifold M that is Hausdorff, connected, and
paracompact equipped with a Lorentzian metric g, a rank two
covariant metric tensor field associated with M which has Lorentz
signature. Given this definition of a relativistic spacetime, the space
of possible cosmologies obviously will range over the set of four-
dimensional topological manifolds; moreover, for each four-
dimensional topological manifold, there is also a range of
smoothness structures on these manifolds that make them into
differentiable manifolds; finally, for each smooth, four-dimensional
differentiable manifold, there is a (“kinematic”) range of Lorentzian
metrics, which range is restricted by the Einstein equation to yield
the possible (“dynamical”) set of cosmologies. I consider first the
range of possibilities permitted by the manifold structure of a
relativistic spacetime, then the range of possibilities permitted by
the metric structure.

4.1. Manifold Possibility

There is presently relatively little that we can say about the
structure of this large and complicated set of solutions in all its
fullness. Since the applications of GTR that are most of interest to
physicists concern particular spacetimes and perturbations thereof,
far less attention has been paid to the set of solutions as a whole.
Yet, as mentioned in the previous section, likelihood arguments
depend on particular structural features of this space, so there is no
getting around the need to understand it.

Of course, with specific modeling assumptions the set of rele-
vant solutions can be reduced to something much more tractable.
In the case of FRW spacetimes, for example, one restricts attention
to manifolds that can be expressed as twisted products I�aS (a is
the scale factor), where I is an open timelike interval in the Lor-
entzian manifold R1;1 and S is a homogeneous and isotropic three-
dimensional Riemannian manifold (McCabe, 2004, 530). Since one
can fully classify these 3-manifolds (Wolf, 2010), one can
enumerate the different possible FRW spacetime manifolds
(McCabe, 2004, 561). With such an enumeration one could (at least
conceivably) specify the likelihoods of each kind of product of 3-
manifolds and 1-manifolds.
25 A classification would not solve the justification problem though. There may of
course be alternate ways of partitioning the set of possible cosmologies, and the
mere existence of a classification scheme in any case does not entail that it is
physically significant. Again, I am setting such concerns aside and concentrating on
the problem of whether one simply has enough structure to define a likelihood
measure of some kind or another on the assumption that natural mathematical
structure has physical significance.
However, if one were to want a likelihood measure on the full
space of possible cosmologies (according to arguments in x3 one
certainly should), in particular one which is naturally motivated by
the mathematical structure of that space, then it would require a
means of classifying all four-dimensional manifolds.25 This is not
yet possible. Indeed, the classification of such manifolds is a noto-
riously difficult mathematical problem (and distinctly so in com-
parison to other dimensions, where classification has been
established by geometrization or surgery techniques) (Freedman
and Quinn, 1990; Donaldson and Kronheimer, 1997). Of course,
one might try to avoid the mathematical difficulties by assuming
that the relevant manifolds are of a particular simple kind or that
many manifolds are unphysical. This opportunistic move is not so
obviously well-motivated however.

Consider, for example, the discovery of so-called exotic
smoothness structures on the topological manifold R4,
i.e. smoothness structures that are homeomorphic to R4 but not
diffeomorphic to the standard Euclidean smoothness structure on
R4. This discovery reveals a large class of possible spacetime
models, one that is almost entirely overlooked in cosmological
work, where the Euclidean smoothness structure is automatically
presumed on the topological manifold R4. Is this presumption
justified? Should spacetimes with exotic smoothness structures be
excluded? The standard of physical equivalence in GTR suggests
that they are not so easily dismissed:

The discovery of exotic smoothness structures shows that there
are many, often an infinity, of nondiffeomorphic and thus
physically inequivalent smoothness structures on many topo-
logical spaces of interest to physics. Because of these discoveries,
wemust face the fact that there is no a priori basis for preferring
one such structure to another, or to the ‘standard’ one just as we
have no a priori reason to prefer flat to curved spacetime
models. (Asselmeyer-Maluga and Brans, 2007, 13)

One should therefore not neglect consideration of these space-
times, at least in the absence of reasons to discount such space-
times as physically possible.

Conceivably, one might retreat from physical likelihood claims
concerning the full space of mathematically possible solutions and
argue that some kind of epistemic likelihood measure is measure
enough. One might hope, that is, that observation and induction
thereon could be used to exclude enough “exotic” spacetimes to
make classification of the remainder tractable. There is reason to
doubt that this strategy would make any important difference,
since alternative spacetime topologies or smoothness structures do
present an underdetermination threat. Observationally indistin-
guishable spacetimes (Glymour, 1977; Malament, 1977) may have
different global topological features, and so-called “small” exotic
manifolds may be smoothly embedded outside our observational
horizon inwhat wewould otherwise have thought was a spacetime
based on R4. Insofar as these alternate spacetimes can have
observable consequences, it would seem that they must be
considered as epistemically possible givenwhatwe knowabout our
observable universe.

Manchak (2009,2011), in particular has forcefully argued that
we do face a substantial epistemic predicament in cosmology
because of the existence of observationally indistinguishable
spacetimes. In his cases global properties of spacetime, such as
inextendibility and hole-freeness, are underdetermined by the
theoretical possibility of observationally indistinguishable space-
times which do or do not possess these propertiesdeven assuming
robust inductive principles for local conditions on spacetime. His
arguments have influenced several commentators to claim that
knowledge of any global property of spacetime is indeed beyond
our epistemic horizon (Beisbart, 2009; Norton, 2011; Butterfield,
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2012, 2014). If Manchak is right, then the kind of under-
determination he discusses cannot be broken or bracketed. If the
other kinds of underdetermination, e.g. by exotic manifolds,
represent an epistemic threat as well, then they too cannot be
broken or bracketed. Thus one must either show that these
underdetermination arguments fail or accept that the success of
likelihood arguments depends on the resolution of the manifold
classification problem.

It may indeed be the case that these underdetermination ar-
guments are unsuccessful, and perhaps just for the usual kinds of
reasons (Laudan and Leplin, 1991). We may, for example, have
grounds to favor a specific choice that breaks the under-
determination, or it may be the case that the underdetermination
in question is of a superfluous feature that only arises because of
our choice of theoretical framework.26 So far, however, there have
been only a few attempts (Magnus, 2005; McCoy, 2017b) at criti-
cizing underdetermination arguments in the specific context of
cosmology.

Yet there is reason to think that critiques of the under-
determination arguments mentioned above would not resolve the
issue in favor of those who would want to exclude unusual
spacetimes in favor of the simple ones. Indeed, some physicists
claim, in effect, that underdetermination may be broken in favor of
the unusual spacetimes. For example, some have argued that we
may justifiably infer non-standard topologies for the universe if it
best explains observational phenomena. As mentioned, exotic
smoothness structures may have detectable astrophysical effects
(Sładkowski, 2009), and if we inhabited a “small universe” (Ellis and
Schreiber, 1986) in which light has had time to travel around the
universe multiple times, thenwemight be able to observe multiple
images of galaxies, etc. which might favor a compact spatial to-
pology.27 Thus it is not enough to show that the under-
determination arguments fail in order to avoid the classification
problem; one must also show that they fail in such a way to make
one׳s preferred set of solutions salient.

Summing up the discussion thus far, I have argued that a sig-
nificant obstacle to defining likelihoods on the space of solutions is
the problem of classifying manifolds. Without some means of
classification, there seems to be no natural way of assigning
likelihoods at this level of description of a relativistic spacetime.
Presently all accounts of cosmological likelihoods, whether ontic
or epistemic, ignore the issue completely, making specific choices
of topology and smoothness structures without justification. This
is not at all surprising, since the potential relevance of non-
standard topologies and smoothness structures is little discussed
in the philosophical or physical literature. It also does not appear
easy to justify the choice cosmologists conventionally make given
what the physical possibilities apparently are. Some of the alter-
native manifolds have physical consequences; if they are physi-
cally possible, it is difficult to see why they should be
automatically considered unlikely (as is done tacitly in assuming
particular manifolds).
26 One should also note that some assumptions have been made already to limit
the theoretical possibilities in cosmology from the beginning. For example, we only
consider locally Euclidean Hausdorff manifolds that are connected, and para-
compact. There are relatively straightforward arguments to favor these particular
choices (Ellis, 1971; Hawking & Ellis, 1973), but they could perhaps be questioned.
27 Various other multiply-connected topologies with observable consequences are
physically possible as well (Lachi�eze-Rey, 1995; Luminet et al., 2003). At least in the
case of multiply-connected topologies, the relevant techniques to test these pos-
sibilities have been developed and observation has largely ruled out that we occupy
one of the distinguishable ones (Cornish et al., 1998, 2004).
4.2. Metric possibility

The next level of description to consider is that in terms of the
spacetime metric. So let us assume, along with workers investi-
gating the solution space of general relativity and, derivatively, the
space of cosmologies, a fixed spacetime manifold M (Isenberg and
Marsden, 1982, 188). Then one can understand general relativity
as a particular field theory on M using the framework of covariant
classical field theory (Fischer and Marsden, 1979). This field bundle
is a map p : LðMÞ/M with typical fiber L, where L is the vector
space of Lorentzian metric tensors, e.g. for p in M, Lp ¼ fgp j TpM �
TpM/Rg with gp normally non-degenerate, symmetric, and pos-
sessing a Lorentzian signature. A configuration of the field is rep-
resented by a section of this bundle, viz. a tensor field g on M. The
canonical configuration space of the theory is thus the space of
sections, which I denote hence as L .

Does L naturally have some structure which could be used to
define likelihoods? This question has not been studied in nearly as
much detail as the geometry of spacetime itself.28 Some things are
known. For example, it is desirable for many applications to treat
subsets of L as a manifold, but in general it is not possible to treat
the entirety of these spaces as a manifold, because of, for example,
the existence of conical singularities in the neighborhood of sym-
metric spacetimes (Fischer et al., 1980; Arms et al., 1982).29

The entire canonical configuration space can be given some
structure by, for example, topologizing it, as a way of introducing
likelihoods topologically. Unfortunately, since there is an infinity of
sections of the field bundle, there is an infinity of topologies which
one can define on the set. How can one decide which topology is
appropriate? Fletcher (2016) observes that some physicists have
advocated a particular topology as appropriate for discussing
similarity relations in general relativity. For example, Lerner (1973)
favors the Whitney fine topology, a topology that is widely used to
prove stability results in GTR (Beem et al., 1996). Geroch has fur-
nished some examples, however, which suggest that this topology
has “too many open sets,” i.e. the topology is intuitively too fine
(Geroch, 1971)dat least for some purposes. Other topologies have
unintuitive results as well. The compact-open topology for
example, renders the verdict that chronology violating space-
times are generic in L in any of the compact-open topologies
(Fletcher, 2016; Curiel, 2015, 12). Such considerations, and some
further results of his own, lead Fletcher to conclude that “it thus
seems best to accept a kind of methodological contextualism,
where the best choice of topology is the one that captures, as best
as one can manage, at least the properties relevant to the type of
question at hand, ones that relevantly similar space-times should
share” (Fletcher, 2016, 15).30 Of course, whether any intuitions one
has about which properties spacetimes should share can be
adequately justified (in a particular context) is then an issue which
must be addressed in each individual case. In any case, this
28 “What is not nearly as well developed is the study of the space of Lorentzian
geometries, which from the mathematical point of view includes questions about
its topology, metric structure, and the possibility of defining a measure on it, and
from the physics point of view is crucial for addressing questions such as when a
sequence of spacetimes converges to another spacetime, when two geometries are
close, or how to calculate an integral over all geometries” (Bombelli & Noldus,
2004).
29 That said, for vacuum spacetimes Isenberg & Marsden (1982) are able to show
that near generic points the space of solutions is a symplectic manifold and as a
whole is a stratified symplectic manifold, at least with their choice of topology, and
restricting to globally hyperbolic spacetimes and spatially compact manifolds.
30 Hawking (1971, 396) advocates a similar contextualism: “A given property may
be stable or generic in some topologies and not in others. Which of these topologies
is of physical interest will depend on the nature of the property under
consideration.”
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“contextuality” at least makes clear what could be gleaned from
the beginning: there is no natural choice of topology for the entire
space L .

There are also obstacles for defining L to be a measure space. In
general L will be infinite-dimensional, essentially because space-
times have an infinity of degrees of freedom (Isenberg and
Marsden, 1982, 181).31 This presents a problem for a measure-
theoretic approaches, a problem to which Curiel (2015) particu-
larly draws attention. As he observes, “it is a theorem…that
infinite-dimensional spaces of that kind do not admit non-trivial
measures that harmonize in the right way with any underlying
topology” (Curiel, 2015, 4). Thus it is not possible to substantiate
claims of the form “most spacetimes (of some kind) are similar with
respect to property X”dwhere one interprets “most” is a measure-
theoretic notion and “similar with respect to” is a topological
notion (Curiel, 2015, 4). He motivates the issue in the following
way:

Say we are interested in the likelihood of the appearance of a
particular feature (having a singularity, e.g.) in a given family of
spacetimes satisfying some fixed condition (say, being spatially
open). If one can convincingly argue that spacetimes with that
feature form a “large” open set in some appropriate, physically
motivated topology on the family, then one concludes that such
spacetimes are generic in the family, and so have high prior
probability of occurring. If one can similarly show that such
spacetimes form a meagre or nowhere-dense set in the family,
one concludes they have essentially zero probability. The intu-
ition underlying the conclusions always seems to be that,
though we may not be able to define it in the current state of
knowledge, there should be a physically significant measure
consonant with the topology in the sense that it will assign large
measure to “large” open sets and essentially zero measure to
meagre or nowhere-dense sets. (Curiel, 2015, 3)

In finite-dimensional spaces it is possible to harmonize these no-
tions in a way to make such claims have content. Although he
points out that the natural infinite-dimensional extension of finite-
dimensional manifolds depends on the differentiability class of the
manifold with which one starts, Fr�echet manifolds do cover the two
relevant cases, and it is a theorem then that “the only locally finite,
translation-invariant Borel measure on an infinite-dimensional,
separable Fr�echet space is the trivial measure (viz. the one that
assigns measure zero to every measurable set)” (Curiel, 2015, 13). It
follows that there is no sensible application of measure theory for
the kinds of topological manifolds one would expect to use for
rigorously discussing cosmological likelihoods.

Thus, even restricting attention to a specific manifold and its
space of sections, there are significant challenges to defining a
likelihood measure. Although there is no problem with simply
supplying this space with a topology, there is no natural topology.
One must make a choice and somehow justify it on some basis
other than that given by the mathematical structure of the space.
If one wants a measure-theoretic explication of likelihood, then
there is a natural measure; unfortunately, this measure is just the
trivial measure. Perhaps there are additional considerations
which can be raised to aid in solving these problems, but at
present one must conclude that likelihood reasoning concerning
GTR׳s solution space has no adequate natural mathematical
foundation.
31 “In cosmology, however, the systems one most often focuses on are entire
spacetimes, and families of spacetimes usually form infinite-dimensional spaces of
a particular kind” (Curiel, 2015, 4).
5. Likelihood in FRW spacetimes

Cosmologists have mostly bypassed the technical and concep-
tual difficulties that come with trying to define a notion of likeli-
hood on the solution space of GTR. Instead they have focused on
simpler finite-dimensional cases, presumably hoping that the re-
sults derived there are consistent with the larger, containing
cosmological possibility spaces (recall the consistency requirement
discussed in x3.1). Simplifying the problem in this way makes it
technically feasible to define a variety of likelihood measures
(although most of the conceptual problems of x3 of course remain).

In this section I discuss one such measure, the most well known
account of cosmological likelihoods (Gibbons et al., 1987), to illus-
trate how some of the problems already mentioned arise in the
simpler case and to present some interpretational issues that arise
which are specific to the GHS measure. The measure defined by
GHS is associated with the set of FRW spacetimes which have a
scalar field as the only matter component. GHS choose the set of
FRW spacetimes because it is the relevant set for describing the
HBB universe. A scalar field is chosen as the matter content in order
to represent the field driving inflation, as their primary aim is to
investigate fine-tuning questions related to inflation (x2).

It is clear, of course, that one cannot count on any serious
empirical confirmation of likelihood assignments to cosmologies
due to the assumed uniqueness of the universe (x3). The exercise of
contriving a likelihood measure might therefore appear futile, as
GHS themselves observe:

The question of an appropriate measure, especially in cosmol-
ogy, might seem to be more philosophical or theological rather
than mathematical or physical, but one can ask whether there
exists a ‘natural’ or privileged measure on the set of solutions of
the field equations. (Gibbons et al., 1987, 736)

This is, of course, the question asked in the previous section, and it
is the question they ask for a restricted set of relativistic spacetimes,
the FRW spacetimes, thereby presuming that mathematical natu-
ralness is a mark of physical significance. In particular, GHS argue
that by adapting the canonical Liouville measure associated with
phase space in statistical mechanics to the case of general relativity,
i.e. formulating GTR as a phase space theory, one obtains a measure
that can be used to make likelihood arguments. This construction is
briefly presented below, followed by its application to the flatness
problem, to the likelihood of inflation, and to the uniformity
problem.
5.1. The Gibbons-Hawking-Stewart measure

To assess these applications, it will be worth detailing some of
the principal features of the GHS measure. I follow in outline the
detailed derivations in (Schiffrin and Wald, 2012) and (McCoy,
forthcoming), since the derivations in (Gibbons et al., 1987) and
other papers making use of it are misleading or mistaken on some
important points.

Since the GHS measure is intended to be the Liouville measure
associated with the phase space of FRW spacetimes, one must first
identify the appropriate phase space G for these spacetimes (with a
scalar field as the matter source). This requires making use of the
initial value formulation of GTR, where one takes a state of the
system to be a spatial hypersurface S, the degrees of freedom of
which are represented by the spatial metric h and its extrinsic
curvature p. Since FRW spacetimes are spatially homogeneous and
isotropic, the spatial metric h is homogeneous and isotropic and the
extrinsic curvature can be shown to be Hh, where H is the spatial
expansion coefficient known as the Hubble parameter. Thus the
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initial data for an FRW spacetime are adequately represented by h
and H.

The Einstein equation for FRW spacetimes relates the hyper-
surface geometry (represented by h and H) with the parameters of
the specified matter contents, i.e. the scalar field. The Einstein
equation can be expressed in two equations with these assump-
tions, usually called collectively the Friedman equations (here
incorporating the scalar field as the matter constituent of
spacetime):

H2 ¼ 8p
3

�
1
2
f
̇ 2

þ VðfÞ
�
� k
a2

; (2)

H
̇
¼ �4pf

̇ 2

þ k
a2

; (3)

where the scale factor a is related to the Hubble parameter H ac-
cording to the equation H ¼ a

̇
=a (dots represent differentiation

with respect to cosmic time t), k represents whether space is
negatively curved (k ¼ � 1), flat (k¼0), or positively curved (k¼1),
f is the field value of the scalar field sourcing the Einstein equation,
and V is the scalar field׳s potential.

Making use of, among other things, the Friedman equations, one
can show that the initial data h and H can be re-expressed in the
four-dimensional space parameterized by fa; pa; f; pfg, where pa
(the conjugate momentum of a) is �3aa

̇
=4 and pf (the conjugate

momentum of f) is a3f
̇
. As with the phase spaces of classical

particle mechanics, this space comes equipped with the canonical
symplectic form

upa;a;pf;f ¼ dpa∧daþ dpf∧df; (4)

In classical mechanics the configuration space is composed of all
the possible positions of the particles and the phase space is
composed of all the possible positions and momenta of the parti-
cles. In the case under consideration, the configuration space is
composed of all the possible values of the scale factor and (ho-
mogeneous and isotropic) scalar field and the phase space is
composed of these plus their associated conjugate momenta.

This space, however, is not yet the correct space of initial data
and this form cannot be used to construct a natural measure. This is
because the first of the two Friedman equations above is a
constraint on this space that must be satisfied by the initial data.
One can pull the symplectic form onto the surface in phase space
that satisfies the constraint equation, but the result is only a (pre-
symplectic) differential form since it is degenerate. There are, in
other words, redundancies among the states in the three-
dimensional constraint surface. These redundancies are due to
states on the surface being dynamically-related (so they are part of
the same phase space trajectory). Thus the natural next step would
be to “solve the dynamics” so that one can take equivalence classes
of phase points that are part of the same trajectory. There are dif-
ficulties with implementing this strategy in the context of GTR, so
the simplest thing to do (what GHS do) is take a two-dimensional
surface that intersects all the histories by setting pa (or, with the
usual substitution, H) to a particular value. This finally yields the
GHS measure mGHS by defining a map from Lebesgue measurable
sets U (Gibbons et al., 1987; Carroll and Tam, 2010; Schiffrin and
Wald, 2012):

U1� 6
Z
U

a2
ð3H2

� þ 2k
�
a2Þ=8p� V

ðð3=4pÞðH2
� þ k

�
a2Þ � 2 VÞ1=2

da df; (5)
where H ¼ H� is used here to pick out a specific two-dimensional
surface. The topology of the aef space depends on k. If we swap
a for a ¼ 1=a, then it is a half-cylinder if k¼0, a hemisphere if k ¼ þ
1, or a hyperboloid if k ¼ �1 (Schiffrin andWald, 2012, 7). Although
the measure is evidently fairly complex, what matters most for its
application is the leading quadratic term a2.

5.2. The flatness problem

Recall that the HBB model׳s fine-tuning problems, when inter-
preted as likelihood problems, depend on a demonstration that the
uniform and flat spacetimes underlying the HBBmodel are unlikely.
Let us begin with the flatness problem. If the flatness problem is
indeed a problem, then what must be shown is that spatially flat
(k¼0) spacetimes are unlikely according to the GHS measure. To
show this the measure of flat spacetimes must be much smaller
than the measure of non-flat spacetimes. Following GHS, we take
the relevant reference class for this claim to be FRW spacetimes.
Various physicists, including Hawking, Page, Coule, and Carroll,
have argued that applying the GHS measure to this problem shows
that spatially flat FRW spacetimes are in fact likely; thus they make
the surprising claim that there is actually no flatness problem at all.
In (McCoy, forthcoming) I analyze their arguments in some detail. I
will summarize the main points from there briefly, for they are
relevant to the considerations raised in this paper and also to the
remaining applications of the GHS measure.

First, note that the leading a2 factor in the GHS measure causes
the integral to diverge for large scale factors (the scale factor ranges
from 0 to infinity) (Gibbons et al., 1987, 745)dcrucially, this is so for
each kdand (less obviously) to converge to 0 for small scale factors.
Thus the total measure of the aef space is infinite for each k. Hence
the GHS measure is not naturally a probability measure, since it is
not normalizable without assuming some particular probability
distribution on the aef space that normalizes it.

The divergence of the measure due to the integral over scale
factors might be taken to suggest that almost all spacetimes have a
large scale factor, since given any choice of scale factor a� the
measure of spacetimes with larger scale factor is infinite and the
measure of spacetimes with smaller scale factor is finite. In this
sense FRW spacetimes typically have large scale factors. But the
claim is misleading to some extent. Consider an analogy with real
numbers. Pick any number between zero and infinity; most
numbers are going to be larger than the chosen number (according
to the usual Lebesguemeasure). Does thatmean thatmost numbers
are “large”? If one is precise about what one takes the claim to be,
then it is correct. But nowhere have we introduced a standard of
“largeness” and the real numbers certainly do not give us one.
Likewise, the analogous claim in the context of FRW spacetimes is
misleading, since there is no given or natural standard of “large” for
scale factors.

In any case, Hawking and Page argue that this fact about scale
factors should be taken to imply that almost all spacetimes are
spatially flat, since the FRW dynamics insures that curved space-
times become flat as the scale factor increases (the curvature k ¼
k=a2). Similarly, Carroll and Tam (2010, 15) take the measure to
show that there is a divergence at zero curvature, fromwhich they
conclude that curved spacetimes have negligible measure and that
flat spacetimes have infinite measure. If these claims are correct,
then flat spacetimes are typical and there is in fact no flatness
problem as cosmologists have usually thought.

In (McCoy, forthcoming) I argue, however, that the in-
terpretations that Hawking and Page, and Carroll and Tam construe
are highly misleading or mistaken in various respects. The first
problem has already been mentioned: there is no natural standard
of “large” scale factor and, hence, no standard of “flatness” for
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curvature, except k¼0. If one does take k¼0 as the natural standard
of flatness, this leads to a second problem, namely that curved
spacetimes do not have negligible measure according to the GHS
measure. Each of the sets of negatively curved, flat, and positively
curved spacetimes has infinite measure. It makes no difference
whether one puts k ¼ � 1, 0, or þ 1; the total measure of each of
these three independent phase spaces is infinite. If a set and its
complement both have infinite measure, then no conclusion can be
drawn about whether it is likely or unlikely. Since the set of
spatially flat FRW spacetimes has infinite measure and the set of
spatially curved FRW spacetimes both have infinite measure, no
conclusion can be drawn about the typicality of spacetime curva-
ture on the basis of the GHS measure alone.

Oneway tomake theirclaimsabout theflatnessproblemcoherent
is to suppose that they are tacitly introducing a “curvature cutoff” by
including the “nearly flat” spacetimes with the flat spacetimes. Then
one could truly state that nearly flat spacetimes are typical. Butwhat
standard of “nearly flat” should one use? As suggested already, it
seems that any choice would be arbitrary, since there is no natural
standard of flatness in the context of FRW spacetimes (other than
exact flatness). Moreover, since whether a spacetime is “nearly flat”
can depend on its dynamical evolution (for non-flat spacetimes), one
should not consider time slices of the cosmological histories; one
should consider full histories (or else stipulate that “nearly flat”
spacetimes must be “nearly flat” for their entire histories).

Despite these issues, Gibbons and Turok (2008) introduce just
such a curvature cutoff. They argue that nearly flat spacetimes are
empirically indistinguishable from flat spacetimes and therefore
identify all the spacetimes flatter than the chosen cutoff. They argue
that their results do not depend on the exact choice of cutoff. In a
sense this claim is true, but it is one thing for their results to not
depend on the choice of a cutoff and another for their results to not
depend on introducing a cutoff. If their results did not depend on
introducing a cutoff at all, then it seems that there would be no
point in introducing a cutoff to beginwith; they should just use the
GHS measure. That their results differ, then, from what would be
obtained by the GHS measure is suggestive. Indeed, by identifying
the sufficiently flat spacetimes in the way that they do, they
effectively assign them zero measure (as Carroll and Tam (2010)
point out). They are no longer using the GHS measure but instead
a probability measure obtained by defining a probability distribu-
tion on the aef space that assigns zero probability to the large scale
factor sets. Obviously it does not matter where one puts in the
cutoff if one wants to throw away infinite measure sets, but it does
seem rather unjustified to discard them when making likelihood
assessments.

Although (McCoy, forthcoming) goes into more details of the
various arguments concerning the likelihood of flatness, it is
enough for my purposes here to mention only these points. The
main one is that the GHS measure by itself tells us nothing about
the likelihood of flatness. The only way that it could be used to draw
definitive conclusions about flatness in FRW spacetimes is to
introduce more structure. Either one picks a standard of flatness,
which appears to be rather arbitrary, or one adds a probability
distribution, in which case one is no longer using the GHS measure
so much as a probability measure that is defined by way of the GHS
measure and the chosen probability distribution. Of course, in this
latter case one expects some special justification for the choice of
probability distribution, since it cannot be natural in the way the
GHS measure is.

5.3. The likelihood of inflation in FRW spacetimes

Although the GHS measure cannot show that the flatness
problem is real or illusory, let us nevertheless suppose that it is real
and motivates the introduction of inflation. Does the GHS measure
have any application to demonstrating that inflation solves the
flatness problem? It would seem not, since it cannot even show that
there is a flatness problem. For the purpose of illustration, let us
consider whether it can.

There is at least a precise condition for when inflation
occursdwhen the universe is expanding at an accelerated ratedso
one can (potentially) pose precise questions about inflating
spacetimes using the GHSmeasure. This can be given as a condition
on the scalar field representing the physical field driving inflation:
f
̇ 2

<VðfÞ. In terms of the phase space variables used before this is

1
4p

�
H2 þ k

a2

�
<VðfÞ: (6)

Two points are important to note at the outset. First, since the
GHS measure is evaluated at a particular Hubble parameter H� and
whether inflation is occurring depends on H, the GHS measure
cannot give a definitive assessment of the likelihood of inflation
without considering full histories. It is not enough to consider some
particular slice through the histories. Second, one also requires a
specific model of inflation (a specific choice of VðfÞ) in order to
make the assessment, since the given condition depends on the
precise shape of the scalar field potential.

Let us turn now to the analysis. Recall from x2 that there are
two conditions that must be met if inflation is to solve the flatness
problem: flatness must be generic outcomes of inflation (Ellis,
1988) and inflating spacetimes themselves must be generic. As
Carroll and Tam point out, however, the second question is not
exactly the question that must be answered affirmatively to solve
the fine tuning problems. It matters not, that is, that some
spacetimes inflate only a little bit without solving the flatness
problem. What one actually requires is that it is likely that an FRW
universe undergoes sufficient inflation to solve the fine-tuning
problems.

Consider the first question. Obviously for the k¼0 case the
question is moot since space is flat regardless of whether there
inflation occurs. Flatness cannot be a generic outcome of inflation if
space is assumed to be flat. So it seems that we must consider non-
flat spacetimes if the question is to have any significance. However,
since spatially curved hypersurfaces cannot become (truly) flat
hypersurfaces through the FRW dynamics, we require some spec-
ification of “nearly flat” in order to claim that some sort of flatness is
a generic outcome of inflation. Not only is such a choice arbitrary, as
noted before, it also makes the question moot. Since the GHS
measure diverges as the curvature k/0 (due to arbitrarily large
scale factors in phase space), almost all spatially curved spacetimes
are nearly flat to begin with, regardless of whether inflation occurs
or does not. Near flatness cannot be a generic outcome of inflation if
nearly all spacetimes are already nearly flat. Thus the GHS measure
is no help in answering the first question (unless one unjustifiably
throws out these initially nearly flat spacetimes).

Does the GHS measure fare any better in answering the second
question? Are sufficiently inflating spacetimes generic? Obviously
we must specify what it means for a spacetime to inflate suffi-
ciently to solve e.g., the flatness problem. If the universe is
spatially flat, then obviously there can be no flatness problem for
inflation to solve. If the universe is spatially curved, then it is clear
that “solving the flatness problem” depends, once again, on an
assessment of the problem in terms of “near flatness”. One could
stipulate a standard, e.g. spacetimes that undergo a certain num-
ber of doublings in size (or alternatively e-folds as cosmologists
usually describe expansion). Then one could at least attempt some
calculations. This is the approach taken by, for example, Schiffrin
and Wald (2012, xIV).
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Schiffrin and Wald elect to treat the k¼0 case for a scalar field in
a simple self-interaction potential V ¼ m2f2=2, i.e. the slow roll
inflation scenario. In this case the GHS volume element simplifies
to

dUfa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4p

H2
� �m2f2

r
da df: (7)

They consider the histories of inflating spacetimes in the slow roll
regime and show that spacetimes which undergo at least Ne-folds
of inflation are the ones for which jfja2

ffiffiffiffi
N

p
. Thus the GHS-measure

of this set is proportional to

Z∞
0

a2 da
Zffiffiffiffiffiffiffiffiffi3=4p

p
H�=m

2
ffiffiffi
N

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4p

H2
� �m2f2

r
df: (8)

The f integral is finite; the a integral obviously is not. If themeasure
of the complement of this set of spacetimes is finite or negligible,
then sufficiently inflating spacetimes would be generic. However, it
should be clear that the set of spacetimes which do not undergo at
least Ne-folds of inflation also has infinite GHS-measure, since the a
integral in the measure of this set would still diverge. Therefore the
likelihood of inflation is (unsurprisingly) indeterminate due to the
large scale factor spacetimes.

Both Carroll and Tam (2010) and Gibbons and Turok (2008)
attempt to overcome this problem with the GHS measure by
regularizing the integrals to make them finite. They also choose to
evaluate the likelihood of inflation at different values of H�. Natu-
rally they come upwith different answers. This is because onemust
consider a full history to determine whether a spacetime has
inflated and because regularizing the divergence in the GHS mea-
sure requires making some (potentially consequential) choice to
make the measure finite. There is no canonical choice: different
choices will lead to different results (this latter issue is thoroughly
discussed in (Schiffrin and Wald, 2012)).

To illustrate the point in a simple way, consider the following.
Since the GHS measure factorizes into two integrals, one over a and
one over f, one might think to define a probability measure mr with
probability distribution r defined by

r ¼ 1Z
dU

: (9)

Then mr is simply
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; (10)

since the integral over the scale factor drops out. This measure is
not invariant under time evolution, however, because a crucial part
32 Carroll has since acknowledged Schiffrin and Wald׳s critique: “The procedure
[Tam and I] advocated in (Carroll & Tam, 2010) for obtaining such a measure was
faulty, as our suggested regularization gave a result that was not invariant under a
choice of surface on which to evaluate the measure” (Carroll & Tam, 2010).
of the time-invariant measure has essentially been thrown away.
Depending on how one chooses H� one will therefore compute
(potentially wildly) different probabilities of inflation (Schiffrin and
Wald, 2012).32

Schiffrin and Wald conclude their analysis with the following
thoughts:

Should one impose a cutoff in a at, say, the Planck time and
conclude that inflation is highly probable? Or, should one
impose a cutoff in a at a late time and conclude that inflation is
highly improbable? Or, should one impose an entirely different
regularization scheme and perhaps draw an entirely different
conclusion? Our purpose here is not to answer these questions
but to emphasize that, even in this simple minisuperspace
model, one needs more information than the GHS measure to
obtain the probability of inflation. (Schiffrin and Wald, 2012, 12)

I am in agreement with their final point: one requires more than
the GHS measure to obtain the probability of inflation. However
this is the case because the GHS measure is not naturally a proba-
bility measure. More importantly, one also requires more than the
GHSmeasure to draw conclusions about whether flatness is typical,
whether inflation generically makes space flat, and whether infla-
tion itself is typical. Thus, although the GHS measure is mathe-
matically natural, it cannot tell one much about the generic
properties of FRW spacetimes.
5.4. The uniformity problem

So far I have only discussed the fine-tuning problems with
respect to a small reference class, the set of FRW spacetimes with a
single scalar field (minisuperspace). This is in several respects an
inadequate reference class. Carroll and Tam (2010, 21) note that
“examining a single scalar field in minisuperspace is an extremely
unrealistic scenario;” Schiffrin and Wald (2012, 12-3) observe that
“minisuperspace is a set of measure zero in the full phase space.
Even if we are only interested in nearly [FRW] solutions, it is far
from clear that the GHS measure will give a valid estimate of the
phase space measure of the spacetimes that are ‘close’ to a given
[FRW] solution.” One might therefore, as a first step beyond FRW
models, move to examining the analog of the GHS measure on
perturbed FRW spacetimes. Obviously this does not solve the
“measure zero” problem, since one can run the same argument on
perturbed FRW spacetimes as one did with FRW space-
timesdlikelihoods assigned to the perturbed FRW spacetimes are
only significant if they are consistent with likelihoods assigned to
the full space of possible cosmologies (x3.1). Presumably, however,
what one aims for is some “inductive” support for conclusions
which are consistent in both the containing and contained refer-
ence classes, since it is not entirely clear what the full set of possible
cosmologies is.

Nevertheless, setting the reasonableness of proceeding to the
side, for the horizon problem to be a problem of likelihoods one
must obviously consider a larger set of spacetimes than the FRW
spacetimes, since these are by definition spatially uniform. The
technical details involved in constructing the relevant Liouville
measure on perturbed FRW spacetimes are somewhat more com-
plex than the technicalities so far discussed and not particularly
illuminating, so I will only mention the relevant results and crucial
assumptions.33 The canonical volume element U on “almost” FRW
models (according to Schiffrin and Wald (2012)) is
33 The interested reader is directed to (Schiffrin & Wald, 2012, xV) and to (Carroll
& Tam, 2010, x5) for further details.
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Here there are additional terms (beyond those in the FRW volume
element UGHS) involving inhomogeneous scalar perturbations (F
and d) and tensor perturbations (h

̇
and h).34 N 1 and N 2 corre-

spond to short-wavelength cutoffs for the scalar and tensor modes,
respectively. These are necessary to make the phase space finite.
One must also impose a long-wavelength cutoff, which Schiffrin
and Wald implement by restricting attention to spatially compact
spacetimes. Finally, some explication of “almost” FRW must be
made: Schiffrin andWald take it to mean that the magnitude of the
metric perturbation F and the magnitude of the density pertur-
bation d are small in comparison to the background FRWmetric, as
do Carroll and Tam (2010).

Although some of the assumptions made to obtain this volume
element may be challenged, the main problems revealed by
adapting the GHS measure to perturbed FRW spacetimes are the
same as before, and it would only belabor the points made already
to go into detail. As before, the total measure of phase space is
infinite, so probabilistic arguments cannot be made on the basis of
the canonical measure alone. Indeed, Schiffrin and Wald note that
“including more perturbation modes makes the large-a divergence
more severe” (Schiffrin and Wald, 2012, 17). It follows that the re-
sults on the probability of inflation given by Carroll and Tam (2010)
cannot to be trusted because an arbitrary choice has to be made to
derive them. Once again, one can get any probability onewants by a
particular choice of H� (the value of the Hubble parameter where
the measure of sets of spacetimes is evaluated).

Can one nevertheless make a likelihood argument with respect
to uniformity? Is there a horizon problem according to the ca-
nonical measure? Carroll and Tam (2010, 25) claim that there is:
“There is nothing in the measure that would explain the small
observed values of perturbations at early times. Hence, the
observed homogeneity of our universe does imply considerable
fine-tuning; unlike the flatness problem, the horizon problem is
real.” In some sense this conclusion is (intuitively) correct, since
one expects that (nearly) uniform spacetimes are highly unlikely
given all the spacetimes that seem physically possible. This goes for
all spacetimes with symmetry, however, insofar as one takes GTR to
delimit the space of possible cosmologies. Of course if one makes
this claim, then one should say the same thing about spatial flatness
(which is plausibly even less likely in the space of possible cos-
mologies). But these conclusions have nothing to do with the GHS
measure; rather they are judgments based on expectations related
to the space of possible cosmologies. This, though, is just the
intuitive basis that objective measures were intended to avoid and
improve upon.
6. Conclusion

I have discussed the formal implementation, interpretation, and
justification of likelihood attributions in cosmology. A variety of
arguments and issues were raised which, taken together, strongly
suggest that the use of probabilistic and similar reasoning is mis-
placed in the context of single-universe cosmology. Some of these
concerned conceptual problems and some concerned technical
34 Note that h here is not the spatial metric as it was previously.
problems. Some of these concerned independent considerations in
cosmology and some concerned the application of considerations
from statistical mechanics in cosmology. In all cases the verdict is
the same: likelihood reasoning is problematic in cosmology. Since
the discussion was widely ranging, a brief summary of the main
points is in order.

The first issue I raised was the reference class problem (x3.1):
What is the appropriate reference class of cosmologies for attrib-
uting cosmological likelihoods? The problem is particularly
important in the context of likelihood arguments, since such ar-
guments depend sensitively on the choice of possibility space.
Although the space of models of GTR is a natural choice for this
space, it is not necessarily the correct one. Nevertheless, it seems
plausible to suppose that the space of models is “large” like the
space of relativistic spacetimes. In this case one requires a way to
attribute likelihoods on the full space of possibilities, since the
appropriate likelihood attributions to subsets of this space may
depend on the likelihoods on the full space. The formal challenges
of implementing some likelihood measure on the full space were
related in x4. The main issues involved the unavailability of natural
structures which could be used as likelihood measures. Although
there is potential for further work here, it does seem doubtful
whether these challenges can be fully met.

However, even if they can be met, the attribution of likelihoods
in cosmology faces significant conceptual difficulties. First is the
issue of interpreting these likelihoods (x3.2). Some may be inter-
preted in terms of typicality, as is popular among some researchers
working on the foundations of statistical and quantum mechancis.
The only available interpretation of cosmological probabilities (in
the particular sense of locating the origin of the probabilistic
“randomness”), however, is that they pertain to an initial random
trial to select an otherwise deterministically-evolving uni-
versedthe “god throwing darts” interpretation. While this strikes
many as practically a reductio ad absurdum of the project of
attributing probabilities to entire universes, it is at the very least
coherent. If this is the only interpretation, though, then it becomes
quite hopeless to justify any particular choice of probability mea-
sure (x3.3): any choice of measure which attributes a non-zero
probability to the model(s) describing our universe is admissible,
in the sense of being empirically adequate.

One might avoid this latter problem by proposing that the
choice of measure is a priori. It has been claimed, for example, that
probability and typicality measures are mathematically natural in
statistical mechanics. There is indeed a relevant sense in which
some mathematical objects “come for free” given certain mathe-
matical structures (they don׳t require any special choices other
than the choice to make a definition), but that does not imply that
their physical interpretation comes for free. In any case, for the
spaces of possibilities considered by cosmologists there is no nat-
ural probability measure, since the total measures of these spaces
are infinite. A choice has to be made, and none of the choices made
by cosmologists is well-motivated, let alone well-justified.

Finally I considered a specific case considered in the physics
literature. For certain spaces of possibilities, e.g. minisuperspace,
there is a natural measure, namely the Liouville measure associated
with the phase space of minisuperspace, called the GHS measure
(x5). I showed (relying partly on arguments made in (McCoy,
forthcoming) and (Schiffrin and Wald, 2012)) that the GHS mea-
sure cannot be used for the purposes to which it has been put by
cosmologists: it cannot be applied to the flatness problem (x5.2); it
cannot be used to calculate the likelihood of inflation in FRW
spacetimes; it cannot be applied to the uniformity problem (x5.4).
In each case the essential issue is that there is no typical spacetime
in the spaces of possibilities considered. Thus one must introduce a
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choice (of cutoff, of probability measure, etc.), none of which is
well-motivated, let alone justified.

It follows that the fine-tuning arguments presented in x2 are
unsupported when fine-tuning is interpreted in likelihood terms.
Therefore the fine-tuning arguments, as they stand, either fail, or
else an alternative interpretation of fine-tuning must be sought
which validates them. Alternative interpretations have been sug-
gested (instability, lack of robustness, excess idealization, etc.)
(McCoy, 2015), although these have so far been little investigated.
Given the problems facing a likelihood interpretation of fine-
tuning, there does seem to be some reason to think that these
alternative approaches to fine-tuning may be more promising,
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